LifePin
Liferay Pinboard System
Architectural Report

Strumpflohner Juri (3195)

Advanced Web Programming

Free University of Bozen-Bolzano

June 25, 2009

LifePin Contents
Contents

1 Introduction 4

2 Use Case View 5

2.1 Actors 5

2.2 Use Case Diagram 6

2.3 Use Case Descriptions 6

3 Infrastructural View 18

3.1 Development tools 18

3.2 Application components 18

3.2.1 Liferay Portal- / Application server 19

3.2.2 Spring Web MVC framework 19

3.2.3 Hibernate ORM framework 20

3.2.4 PostgreSQL database 20

4 Logical View 21

4.1 Application layering components 21

4.2 Packages and class diagrams 22

4.3 Presentation Layer 24

4.3.1 Package “com.lifepin.controller” 25

4.3.2 Package “com.lifepin.validator” 26

4.3.3 Package “com.lifepin.utils” 27

4.4 Service Layer o 28

4.4.1 Package “com.lifepin.iservices” 29

4.4.2 Package “com.lifepin.services” 30

4.5 Data Access Layer oL 30

4.5.1 Package “com.lifepin.idaos” 31

4.5.2 Package “com.lifepin.daos” 31

4.6 Transversal layer 32

4.6.1 Package “com.lifepin.entities” 32

4.7 Database schema 0L 32

4.8 Sequence diagrams / Scenarios 33

4.8.1 Creating a new LifePin message 33

5 Development 35

5.1 Testing 35

5.2 Technical problems 35

5.2.1 Loosing parameter values on validation errors 35

5.2.2 Localization problems 37

LifePin Contents

5.2.3 Hibernate “Set” vs. “List” mapping 37

LifePin 1 Introduction

1 Introduction

LifePin is a simple pinboard system designed to be deployed as a portlet
on the Liferay portal server. It allows users to communicate in an easy
fashion between each other by writing posts and comments that are shown
on LifePin.

The name stands for “Life” for Liferay and “Pin” for Pinboard system.

LifePin 2 Use Case View

2 Use Case View

This section first outlines the main actors of the LifePin application and
then shows the major functionalities with a more detailled description.

2.1 Actors

The following are the main actors that use the LifePin application.

o Guest
The guest user can be any arbitrary user that visits the portal website
containing the LifePin portlet. The user cannot be identified since it
either isn’t logged in or it doesn’t yet have an account.
Guest users are limited to reading messages. They have no possibility
to add, remove or leave comments on LifePin entries.

e LifePin User
The LifePin user is a user that has a valid account on the portal server
and is registered and authenticated. It has rights to create new entries,
edit entries written by himself, add comments to LifePin messages and
delete his comments and written messages.

e Administrator/Power User
The administrator / power user is a specific user of the portal that has
the role of an “Administrator” and/or “Power user” associated. He can
act just like a normal LifePin user but in addition he has augmented
rights to edit messages of other users as well as delete their comments
or messages.

e LifePin System
This is a special actor representing the LifePin system. This actor
executes operations behind the scene such as cleaning expired LifePin
messages.

LifePin 2 Use Case View

2.2 Use Case Diagram

uc Use Case View

remave expired
entries

System

Mot possible for the
view personal .. ococoo-e- -----===- "1 Guest user
enfries

view user's entries

i i e)z“
Guest //
A L
V; search entries add comment
/ -
p -

S - xexiends
V e
/ . p
// view entry detail P remave come
cextands
/

S

< 5
create entries LifePin User can do

LifePin User this just for his own
| entries
Administrator | Power
= User

delete enfries

edit enfries

Figure 1: Use case diagram

2.3 Use Case Descriptions

It follows a detailled description of the single use cases.

LifePin 2 Use Case View
Name Create entries
Description The user can create new LifePin entries. These
entries will then be displayed on LifePin’s list
of entries.
Actors

e The LifePin user.

Special requirements | none
Preconditions
e The LifePin user must be registered to the
portal.
e The LifePin user must be authenticated.
Postconditions

e The entry created by the user appears on
the top position of LifePin’s entry list.

e The user receives a notification message
about the successful creation.

Basic flow

The use case has the following flow:

e The user authenticates himself on the por-
tal with his username and password

e On the main interface showing the list of
all entries, the user clicks on the link for
creating a new entry.

e The user fills out the form with the desired
information.

e If the entered information is valid, the
user can submit the request for creating
the entry.

Alternative flow

The user fills the form with invalid data:
e A red error message appears just below
the field containing the invalid data, noti-
fying the user about the problem.

Table 1: Use case: Create entries

LifePin

2 Use Case View

Name View entry list

Description The user can view the list of all available LifePin
messages

Actors

e The Guest user
e The LifePin user

Special requirements | none
Preconditions none
Postconditions

e The user sees the list of all available mes-
sages in descending order according to
their creation date (newest on top posi-
tion).

Basic flow

The use case has the following flow:
e The user views the LifePin portlet and
sees the list of all available messages.

Alternative flow

none

Table 2: Use case: View entry list

LifePin 2 Use Case View
Name View personal entries
Description The user can view all the entries that have been
written by himself.
Actors

e The LifePin user

Special requirements | none
Preconditions
e The LifePin user must be registered to the
portal.
e The LifePin user must be authenticated.
Postconditions

e The user sees a list of all the messages that
have been written by himself.

Basic flow

The use case has the following flow:
e The user authenticates himself on the por-
tal with his username and password
e On the main interface showing the list of
all entries, the user clicks on the link for
retrieving his personal entries.

Alternative flow

The user has not written any entries yet:
e A message will be shown notifying the
user that no entries have been found

Table 3: Use case: View personal entries

LifePin

2 Use Case View

Name View user’s entries

Description The user can view entries written by a specific
LifePin user.

Actors

e The Guest user
e The LifePin user

Special requirements | none
Preconditions none
Postconditions

e The list of entries written by the selected
user are being displayed

Basic flow

The use case has the following flow:

e The LifePin user or Guest user visit the
LifePin application.

e The user selects an entry of his interest

e On the detail view he can click on the ap-
propriate link just below the user’s portal
avatar for viewing the user’s written mes-
sages.

Alternative flow

The selected user has not written any entries
yet:
e A message will be shown notifying the
user that no entries have been found

Table 4: Use case: View user’s entries

10

LifePin

2 Use Case View

Name View entry detail

Description The user can view the details of a LifePin mes-
sage such as its title, content, the associated
comments, the user which wrote it etc. ..

Actors

e The Guest user
e The LifePin user

Special requirements | none
Preconditions none
Postconditions

e The user sees the details of the LifePin’s
message he’s viewing

Basic flow

The use case has the following flow:

e The user selects the message of his interest
on the main LifePin’s interface showing
the list of all available entries.

e A new view opens showing the details of
the selected entry.

Alternative flow

none

Table 5:

Use case: View entry detail

11

LifePin 2 Use Case View
Name Add comment
Description When viewing the details of a LifePin message,
the user has the possibility to interact with the
author of the message by leaving a comment.
Actors

e The LifePin user

Special requirements | none
Preconditions
e The LifePin user must be registered to the
portal.
e The LifePin user must be authenticated.
e The user must be on the detail view of a
given LifePin message.
Postconditions

e The comment written by the user appears
at the end of possibly already existing
comments.

e The user receives a notification message
about the successful creation of his com-
ment.

Basic flow

The use case has the following flow:

e The user authenticates himself on the por-
tal with his username and password

e On the main interface showing the list of
all entries, the user selects the entry of his
interest.

e In the detail view, the user clicks on the
appropriate link for adding a new com-
ment.

e On the appropriate form, the user enters
the content of his comment.

e If the entered information is valid, the
user can submit the request for adding the
new comment.

Alternative flow

The user fills the comment form with invalid
data:
e A red error message appears just below
the field containing the invalid data, noti-
fying the user about the problem.

12

Table 6: Use case: Add comment

LifePin 2 Use Case View
Name Remove comment
Description The user can remove a comment he has previ-
ously added to a LifePin message.
Actors

e The LifePin user
e The Administrator/Power user

Special requirements

none

Preconditions

The LifePin/Administrator/Power user
must be registered to the portal.

The LifePin/Administrator/Power user
must be authenticated.

The LifePin/Administrator/Power must
be on the detail view of a given LifePin
message.

Postconditions

The deleted comment is no more visible on
the list of comments of the current LifePin
entry.
The user receives a notification message
about the successful deletion of the com-
ment.

Basic flow

The user case has the following flow:

The LifePin/Administrator/Power user
authenticates himself on the portal with
his username and password

On the main interface showing the list
of all entries, the LifePin/Administra-
tor/Power user selects the entry of his in-
terest.

In the detail view, the LifePin/Adminis-
trator/Power user selects the comment he
wants to delete by clicking on the appro-
priate link.

Alternative flow

The current LifePin message has no comments:

The links for deleting comments will not
be shown.

Table 7: Use caseigRemove comment

LifePin 2 Use Case View
Name Delete entries
Description The user can delete a LifePin message he has
previously written.
Actors

e The LifePin user
e The Administrator/Power user

Special requirements | none
Preconditions
e The LifePin/Administrator/Power user
must be registered to the portal.
e The LifePin/Administrator/Power user
must be authenticated.
Postconditions

e The deleted LifePin message is no more
visible on the list of entries on the main
LifePin interface.

e The user receives a notification message
about the successful deletion of the entry.

Basic flow

e The LifePin/Administrator/Power user
authenticates himself on the portal with
his username and password

From this point there are two different flows:
e The user starts from the main list of all
LifePin entries
— The user identifies the entry he wants
to delete and clicks on the appropri-
ate link.

e The user starts from the detail view of a
specific message

— The user clicks on the appropriate
link for deleting the entry

Alternative flow

none

Table &: Use case: Delete entries

14

LifePin 2 Use Case View
Name Edit entries
Description The user can modify the details of his message
at any time.
Actors

e The LifePin user
e The Administrator/Power user

Special requirements | none
Preconditions
e The LifePin/Administrator/Power user
must be registered to the portal.
e The LifePin/Administrator/Power user
must be authenticated.
Postconditions

e The changes are applied on the existing
LifePin message.

e The existing LifePin message is still vis-
ible on the main page, reflecting the ap-
plied modifications.

Basic flow

e The LifePin/Administrator/Power user
authenticates himself on the portal with
his username and password

From this point there are two different flows:
e The user starts from the main list of all
LifePin entries
— The user identifies the entry he wants
to edit and clicks on the appropriate
link.

e The user starts from the detail view of a
specific message

— The user clicks on the appropriate
link for editing the entry

Alternative flow

none

Table 9: Use case: Edit entries

15

LifePin

2 Use Case View

Name Search entries

Description The user can search for the title and content of
existing LifePin messages. The search may al-
low simple OR and AND concatenated queries.

Actors

e The Guest user
e The LifePin user

Special requirements | none
Preconditions none
Postconditions

e The user sees a list of matching LifePin
messages.

Basic flow

The use case has the following flow:

e The LifePin/Guest user types the desired
search query on the appropriate text field
on the main LifePin interface.

e After entering the search query he submits
it.

Alternative flow

No entries match the given query:
e A notification will be shown, indicating
that no entries have been found with the
given query

Table 10: Use case: Search entries

16

LifePin 2 Use Case View
Name Remove expired entries
Description The system automatically deletes all entries
that are no more valid according to the expiry
date specified by the user.
Actors

e The System

Special requirements | none
Preconditions none
Postconditions

e Expired LifePin messages have been re-
moved and are no more visible to the users
on the LifePin user interface.

Basic flow

The user case has the following flow:
e The LifePin system checks in regular in-
tervals for expired posts
o All expired messages are removed perma-
nently.

Alternative flow

No expired messages have been found:
e Nothing will be done; the system waits for
the next scheduled check.

Table 11: Use case: Remove expired entries

17

LifePin

3 Infrastructural View

3 Infrastructural View

3.1 Development tools

The following table gives an overview of the major libraries and tools that
have been used for the development.

Name

‘ Description

| URL

Netbeans 6.5

Main development 1D

http://www.netbeans.org/
downloads/

Liferay portal
server

Portal- / Application server

http://www.liferay.com/web/
guest/home

Spring Web application framework | http://www.springsource.org/
Hibernate ORM, persistency frame- | https://www.hibernate.org/
work
PostgreSQL Database server http://www.postgresql.org/
DisplayTag Used for displaying data | http://displaytag.sourceforge.
with paging functionality net/1.2/
jQuery JavaScript library used for | http://jquery.com
enhancing the user experi-
ence
JUnit Unit testing framework http://www.junit.org

Table 12: Libraries and tools used for development

3.2 Application components

Figure 2 shows the main application components.

18

http://www.netbeans.org/downloads/
http://www.netbeans.org/downloads/
http://www.liferay.com/web/guest/home
http://www.liferay.com/web/guest/home
http://www.springsource.org/
https://www.hibernate.org/
http://www.postgresql.org/
http://displaytag.sourceforge.net/1.2/
http://displaytag.sourceforge.net/1.2/
http://jquery.com
http://www.junit.org

LifePin 3 Infrastructural View

Infrastructure
y
o
= Spring
g
E \ J
f - > 8
0 HTTP = XML
« H Hibernate
Client B %’- U Dom/ Castor} PostgreSQL
(Browser) =] Database
(7]
®
= JDBC
[J2EE J

Figure 2: Infastructure diagram

3.2.1 Liferay Portal- / Application server

The Liferay portal is the hosting system of the LifePin application. It
handles the basics of the portlet’s lifecycle. Moreover it provides useful func-
tionalities such as user authentication and user information as well as Ul
utilities.

Detalils
Version 5.2.1

3.2.2 Spring Web MVC framework

LifePin uses the Spring Web MVC framework as main framework for
development. Spring supports the development through all the different ap-
plication layers by using the IoC container and the dependency injection
pattern for facilitating loosely coupling among the different objects. In spe-
cific it provides for the..

e .presentation layer the MVC construct that allows to define HTTP
handlers that map HTTP requests to specific controllers. In addition
validators can be attached for user input validation.

e ..data access layer an integration of the Hibernate ORM tool and
declarative transactions management.

19

LifePin

3 Infrastructural View

Details

Spring version

Spring Web MVC version

Spring Web MVC portlet version
Presentation layer configuration
Service layer configuration

Data access layer configuration

3.2.3 Hibernate ORM framework

2.5.5

2.5.5

2.5.5
lifepin-portlet.xml
lifepin-service.xml
lifepin-data.xml

Hibernate is the object relational mapping framework that has been used
for mapping the application entities to the according relational database
tables. Spring’s HibernateDaoSupport has been used to integrate Hibernate

into the application.

Detalils

Hibernate Version
Entity mapping files location

Entity mapping files

3.2.4 PostgreSQL database

3.2.0.cr4
/docroot/WEB-
INF /classes/com/lifepin/entities

e PinboardEntry.hbm.xml
e Comment.hbm.xml

PostgreSQL has been chosen as the underlying database system for stor-

ing data persistently.

Detalils

DBMS Version
Database schema
Username
Password

20

8.3
awpdb
unibz
unibz

LifePin 4 Logical View

4

4.1

Logical View

Application layering components

The application is designed in three major layers:

Presentation layer

This layer contains the UI related components such as the different
controllers that are resonsible for handling the request and response.
Objects in this layer do not contain any business logic but they call the
appropriate service objects for that purpose.

Service layer
The service layer exposes the applications’ services containing the main
business logic.

Data Access layer

The data access layer contains the according DAOs (Data Access Ob-
jects) for persisting data to the database. Hibernate is used as the
object relational mapping tool for mapping the application’s business
entities to the according database tables.

Transversal (layer)

The “transversal layer” is not a real layer, but a component that is
shared among all the other layers. It mainly contains the business
entities that are used for transporting the data among the layers.

In order to further decouple the different layers, the access to each of
them is clearly defined with interfaces (layers). Service classes as well as
data access classes are never referenced directly but always through the ac-
cording interfaces which define the contract for the communication. Figure
3 illustrates this further.

21

LifePin

4 Logical View

emp Layering diagram 7

Presentation Layer

com _lifepin.validator com_lifepin.utils
;
e .

cusas
com lifepin.controllers

g
O -
¥

w0

g

2

i

i

B

B

#

com.lifepin.services

Service Layer

com.lifepin.daos

~auses

Transversal

com.lifepin.entifies

Figure 3: Application layers

4.2 Packages and class diagrams

The following diagram gives an overview of the packages and their rela-
tionships. A more detailed descripton of the single packages with the accord-
ing classes grouped by layers follows in the subsequent sections.

22

LifePin

4 Logical View

class Packages .~

com.lifepin.controllers

+ AddCommentController
+ DeleteCommentControllar
+ DeleteEntryController

+ DetailfiewControliar

+ EditEntryControlier

+ LifePinControlier

+ SeanrchCommand

+ SearchController

+ UserEntriesCommand

+ UserEntriesController

T

I

I

I
wxusen

i/

com.lifepiniservices |

@ + {CommentSerndce
—@ t IFPinboard Sendce
=3 + ISeamhTokenizerSenice

com.lifepin.services |

+ CommentService
+ MessageCleanarSernvice
+ PinboardService

+ SearchTokenizerService

1
-
com.lifepin.idaos

o + ICommentDAC
g + IPinboamEntnyDAC

1 -

| -
| #

-
4k—|/
com.lifepin.daos

+ CommentDal
+ Pinboard EntryDAC

Fa .

use T
wusen =3 5 + DateHandler

com.lifepin.validator

+ CommentValidator
+ Pinboard Entryalidator

com.lifepin.utils

+ DateFormat

+ LifePinUserlHtil
+ MessageLHil
+ ParameterMameConstants

\
-
~
~
alUSen
\
w
~
~
e
-
wUSEn ™ -
=

com.lifepinentiies

+ Comment
+ PinboardEntry
+ SearchQuery

Figure 4: Packages diagram

23

LifePin

4 Logical View

4.3 Presentation Layer

Validator
com lifepin validator::
PinboardEntryValidator

-

supports(Class) : boolean
validate(Object, Emors) : void

+

com lifepin controllers -
UserEntriesCommand

- userd: long

+

getUsend(: long
+ setUsedd(long) : void
UserEntriesCommand()

+

com.lifepin.controllers::
SearchCommand

class Presentation Layer
AbstractControler
com lifepin. =LifePinCi
- R - IPinboards — rall
=Rende erRequest, Re) : ModelAndView
+ =z a(=) : void
SimpleFormControfler
com.lifepin.
= =null
+ EditEntryControlier)
formBackingObject{PortietRequ Object
=tRequest, =tReque) - void
i jonRequest, . Object, Bi o) - void
proce equest, . Object,) : void
+ == - =) - void
AbstractGontroler
com.lifepin. De
- P =null
=Rende = , RenderResponse) : ModelAndView
+ seff =
AbstractCommandControler
com lifepin “UserEntri
- =nul
handleAct equest, Acti . Object, Bi jon) - void
eRender(RenderRequest, Rende . Object, MaodelandView
+ == ica(IPi <) - void
+ UserEntiesControlier)
AbstractCommandControfler
com.lifepin. s
- - =nul
- search ISearch i ice = null
handieAct . Object, Bi ion) - void
=RenderRends est. Rende Object.) : ModelandView
+ SearchController()
+ seff =
+ i T,
SimpleFomControlier
com.lifepin. A
- = nul
+ AddCommentControlier])
formBackingObject{PortietReque
ot =quest. Object.
p . Object,
= dSenice(|PinbosrdS
AbstractControlizr
com_ lifepin. DeleteC:
= 1S [1S =nul
= null
handie squest,) : void
=Rende ende =) - ModelAndView
+ setCommentService(ICommentSenvios,
T i Iy

- searchString: Sting

+ getSearchSting() : String

+ SearchCommand()

+ setSesrchString(String) : void
Validator

com_lifepin.validator::
CommentValidator
+ supports(Clas:
+ validste(Object, Emo

Figure 5: Presentation Layer classes (util classes have been left away to keep

it simple)

24

LifePin

4 Logical View

4.3.1 Package “com.lifepin.controller”

Class ‘ Description

LifePinController This controller is responsible for showing the
list of all available LifePin messages on the
main LifePin user interface.

AddCommentController This is the controller that handles the adding

DeleteCommentController

DeleteEntryController

DetailViewController

EditEntryController

SearchCommand

of new comments by LifePin users. It has a
form behind with an appropriate text area
for entering the comment and then redirects
back to the detail view of LifePin messages.

This controller handles the deletion of exist-
ing comments by a LifePin user or system
administrator.

This controller handles the deletion of exisit-
ing LifePin entries by a LifePin user or sys-
tem administrator.

This controller is responsible for showing the
details of a LifePin message to the user. For
this purpose it invokes the according service
class for retrieving the data and forwards it
to the right detail JSP view.

This controller handles requests for editing
existing LifePin messages by a LifePin user
or Administrator.

This command class is used for binding the
data entered by the user on the search text
field. The bound data will then be consumed

by the appropriate controller.

25

LifePin 4 Logical View

Class Description

SearchController The search controller is used for retrieving
the data bound by the SearchCommand ob-
ject and for then calling the appropriate
service classes for performing a search for
LifePin messages.

UserEntriesCommand This command class is used for binding the
user id.
UserEntriesController This controller retrieves all LifePin messages

written by a specific user that is identified
by the id stored in the UserEntriesCommand
class. Instead of using the UserEntriesCom-
mand object, the according userid could also
have been just passed over the URL.

4.3.2 Package “com.lifepin.validator”

Class ‘ Description

Comment Validator This is the validator used for validating the
user input for a new comment.

PinboardEntry Validator This validator validates the correctness of the
data entered by the user such as validating
the given expiry date or entered email ad-
dress.

26

LifePin

4 Logical View

4.3.3 Package “com.lifepin.utils”

Class

‘ Description

DateFormat

DateHandler

LifePinUserUtil

MessageUtil

ParameterNameConstants

This enumeration is used for keeping the dif-
ferent date formats used throughout the ap-
plication.

This is a utility class for creating date in-
stances or formatting dates according to the
formats specified in the DateFormat enumer-
ation.

This utility class is a kind of wrapper that
bundles all operations releated to retrieving
the currently authenticated portal user. In
this way this logic is not spread throughout
the applicaton and can be changed more eas-

ily.

This class is used for retrieving LifePin notifi-
cation messages from the request object and
for passing them to the according model or
response to get them rendered on the accord-
ing view. It is basically a kind of forwarding
mechanism.

This class contains a set of string constants
that are used for identifying request or re-
sponse parameters. This avoids hardcoded
strings throughout the whole application and
makes it more easy to change parameter
names if needed.

27

LifePin 4 Logical View

4.4 Service Layer

class Service Layer

cinterfaces

com.lifapin iservic linboardService TimerTask

comlifepin.services:MessageCleanerService

+ deletePinboardEntry{FinbosrdEntry) - void

+ deletePinboandEntryfiong) : void _pinbasrdSenice - pinboardServica: |PinbosrdSenice = null
+ getAlF ies() - List<Pinb 0

+ get dPinboardEntries() : Lizt<PinboardEnt - cleanExpiredMessages() : void

+ getPink yvByldfiong) - FinboardEntry + MessageCleanerSenice()

+ getlUzerEntriesfiong) - Lizt<PinboardEntry> + munf) : void

+ zavePinbosnEntry{FinbosrdEntry) : void + setPinboardService(IPinboardSenvice) : void
+

searchf) - List<F 42

i

|

|

| cinterfaces cinterfaces

| com.lifepin.iservices:: com.lifepin.iservices::

! ICommentService ISearchTokenizerService

|

} + deleteComment(iong) : void + createSearchObjectString) - SearchQueny
1 + getCommentByidfiong) : Comment

«com lifepin.services::Pinboard Service

i

- pinboardEntryDao: IPinboardEntryDAQ = null

deletaPinboardEntry(PinboardEntry) - vaid
PinboardEntry(long) : void
getAllPinbosrdE :

¥
getExpiredPink): List=PinboardEntry

gl F ¥

): ListPinboardEntry
savaPinbosrdEntry(FinbosrdEntry) - void
esrchPinboardEntres(SesrchQuery) : List<PinboardEntry
setPinboardEntryDao(|PinboardEntryDAC) : void i . ; - fitarSymbals: Sting () =
i it S TSGR e REGEX_OR_CHAIN: Sting
REGEX_OR_COUPLE: String =
- REGEX_WHITESPACE: Sting
+ deleteComment(long) : void s=archObject: SearchQuery

+ getCommentByld(long) : Comment - searchSting: String

+ setCommentDao(|CommentDAD) : void

com lifepin.services::SearchTokenizerService

______________[>

P

[l

i

- commentDso: |CommentDAC = null
[]is]+* freadOnhy}

- cleanSearchQuery() : void
- teSearchObject{String) : SesrchQuery

- fiterANDKeywords() : void

- fitterOR_CHAINKeywords() : void
- fitterORKeywords() : void

- initialze(String) : void

+ SesrchTokenizerSenvice()

Figure 6: Service Layer classes

28

LifePin 4 Logical View

4.4.1 Package “com.lifepin.iservices”

Class ‘ Description

[CommentService This is the interface used for accessing the
comment service that provides the accord-
ing methods for retrieving comments by their
id and for deleting existing comments. For
the database related operations, the accord-
ing DAO class is used.

[PinboardService This is the interface to the PinboardSer-
vice which provides functionalities for han-
dling LifePin entries, i.e. retrieving all
entries, storing/updating new/modified en-
tries, deleting or searching for them.

[SearchTokenizerService This is the interface for the SearchTokeniz-
erService that is used for splitting concate-
nated “OR” or “AND” queries that are used
for performing searches.

[MessageCleanerService This interface is used for accessing the Mes-
sageCleanerService that gets invoked by a
Spring timer task and cleans the expired mes-
sages from the DB.

29

LifePin

4 Logical View

4.4.2 Package “com.lifepin.services”

Class

‘ Description

CommentService

PinboardService

SearchTokenizerService

MessageCleanerService

face.

face.

4.5 Data Access Layer

This service class implements the operations
specified by the ICommentService interface.

This service class implements the operations
defined by the IPinboardService interface.

This service class implements the operations

defined by the ISearchTokenizerService inter-

This service class implements the operations
defined by the IMessageCleanerService inter-

class Data Access Layer

IR

«interfaces
com.lifepin.idacs IPinboardEnry DAQ

delete Finboard EntryFinboardEntny) © void
getAlPinboardEntries() - List<PinboardEntny=
getExpiredPinboardEntries() - List<PinboardEntry=
getPinboardEntres(SearchQuery) - List<PinboardEntry=
getPinboardEntryfiong) : PinboardEntry
getPinboardEntryByUseridlong) - List<PinboardEntry=
zavePinbosrdEntryjFinboardEntny) - void

winterfaces
com. lifepin.idacs - 1CommentDAQ
+ deleteComment{Comment) : void
+ getCommentfiong) - Comment

I

HibemateDaoSupport
com.lifepin.daos::PinboardEntryDAC

HihemateDao Support
com.lifepin.daos::CommentDAD

PR

BASEQUERY: Siring =" from " + Pinb... {readOnl

ENTRY_BY USERID: String =" where pEntry.... {readOn
‘ORDER_CLAUSE: String =" order by pEnt... {readOnly}

+ deleteComment(Comment] : woid
+ getComment(long) : Comment

R

deletePinboard Entry(Pinboard Entry) : void
getAllPinboard Entries() : List<PinboardEntry=
getExpiredPinboardEntries() : List<Pinboard Entry>
getPinboard Entries(SearchQuery) : List<PinboardEntry>=
getPinboard Entry(long) : PinboardEntry

getPinboard EntryByUserld(long) : List<PinboardEntry=
savePinboardEntry(Pinboard Entry) : woid

Figure 7: Data Access Layer classes

30

LifePin 4 Logical View

4.5.1 Package “com.lifepin.idaos”

Class ‘ Description

[CommentDAO This interface defines the operations exposed
by the according CommentDAOQO class that is
used for retrieving comments by their id or
deleting existing comments.

[PinboardDAO This is the interface for the PinboardDAO
class that is used for all persistency-related
operations for PinboardEntry objects such
as retrieving/saving/deleting/searching Pin-
boardEntry objects from the underlying DB.

4.5.2 Package “com.lifepin.daos”

Class ‘ Description

CommentDAO This data access object implements the oper-
ations defined by the ICommentDAO inter-
face.

Pinboard DAO This data access object implements the op-
erations defined by the IPinboardEntryDAO
interface.

31

LifePin

4 Logical View

4.6 Transversal layer

class Transversal Layer

Comparsbie
com.lifepin.entifies::PinboardEntry

com.lifepin.entifies::SearchQuery

.compareTo(PinboardEntry) : int o]
com.lifepin.entifies :=Comment

addKeyword AND(String) : void
addKeywordOR(String) : void
ath

() : Amaylist<String=
vordAND{String) : void
vord OR(String) : void

R

enyl)
setieywordsAND{AmayList<String>) : void
setieywordsOR(AmayList<String=) : void

jgetBody() : String

getComments() : Set<Comment=>
jgetContactEmail() : String
jgetCreationDate() : Date
jgetExpiryDate() : Date

jgetld(): long

(getTitle() : String

jgetUserld() : long

PinboardEntry()
PinboardEntry(String. Sting. Date, Date, Set<Comment=)
setBody(String) : void
setComments(Set<Comment) : void

Comment(
Comment(String, Date)
getContent() : Sting
getCreationDate() : Date
getld() : long
getUserld() : long
getUsemame() : String
setContent{String) : vok

L

setld(long) :

setContactEmail(String) : void
setCreation Date(Date) : void
setExpinyDate(Date) : void
setld{long) : void
setTitle(String) : void
setUserld(long) : void

=)
.
B

setUserld(long) : void
setUsemame(String) : void

R e

Figure 8: Transversal Layer classes

4.6.1 Package “com.lifepin.entities”

Class

‘ Description

Comment

PinboardEntry

SearchQuery

4.7 Database

This is the business entity representing user
comments.

This entity represents LifePin messages such
as its owner, the message, creation date, ex-
piry date etc. ..

This entity represents a search query entered
by the user and processed by the SearchTo-
kenizerService class. It contains already the
processed AND and OR concatenated key-
words.

schema

The following figure shows the database schema that is used for storing
the LifePin entries with its associated comments.

32

LifePin 4 Logical View

[fpn_pinboardentries Z Ifpn_comments -
idpinboardentry: INTEGER # idcomment: INTEGER

& title: VARCHAR associated ¥ ffon_pinboardentries_idpinboardentry: INTEGER (FK)
@ content: VARCHAR 1 |/ @ content: VARCHAR

& creationdate: DATETIME | T "N & creationdate: DATETIME

& expirydate: DATE & userid: INTEGER

& userid: INTEGER I3 Mfon_comments_FKIndex1

& contactemail: VARCHAR % ffpn_pinboardentries_idpinboardentry

Figure 9: LifePin DB schema

4.8 Sequence diagrams / Scenarios
4.8.1 Creating a new LifePin message

The following sequence diagram shows the major parts that are involved
when the user creates a new LifePin pinboard entry. The Dispatcher Portlet
has been taken as a starting point of the application. The calls between
the DispatcherPortlet and the EditEntryController don’t have to be taken
strictly. There are a couple of Spring objects and handlers in between that
inject the service classes, forward the Http request etc.

33

LifePin 4 Logical View

Figure 10: Adding a new LifePin entry

The actions for editing an existing LifePin entry are similar with the
difference that not a new PinboardEntry object is created, but the existing
one is loaded from the DB with its id (taken from the request parameters) by
passing through the PinboardService and PinboardEntryDAO. In addition
when saving the edited entry, the userid and the creationDate are not updated
again, since they should remain the same as initially.

34

LifePin 5 Development

5 Development

5.1 Testing

A test-driven development approach has been used for developing the ap-
plication by first defining the interfaces, then by writing the according unit
tests before finally implementing the actual logic. The layered architecture as
well as Springs dependency injection pattern greatly facilitate this approach
by drammatically reducing the object coupling and so as a consequence in-
creasing the testability of classes. So it was quite easy to create a separate
(test) data source provider in the according lifepin-data.xml for testing the
persisting and reading of objects without polluting the main database.

Also due to the dependency injection approach, injecting mock objects for
testing would be quite easy.

5.2 Technical problems

This section points out some technical problems that have been encoun-
tered during the development and their according solutions.

5.2.1 Loosing parameter values on validation errors

A problem that has been encountered is the loosing of parameter values
on a form when a validation error occurs. This has been the situation during
the implementation of the “Add comment” use case. When the user clicks
the “Add comment” link, the request starts from a detail view page where
a specific LifePin message is being shown. In order to be able to return to
that view, the id of the corresponding message has to be passed to the view
containing the comment form. In the comment form the parameter is read
directly in the JSP code and passed again to the actionURL of the submit
and cancel action. This is necessary for then being able to read the id from
the URL in the AddCommentController.

<portlet:actionURL var="actionUrl”>
<portlet:param name="action” value="addComment” />
<portlet:param name="pinboardEntryld”
value="${param. pinboardEntryId}” />
</portlet:actionURL>

Note, the ”${param.pinboardEntryld}” reads the parameter value from
the request URL.
In the onSubmitAction method of the AddComment controller, this specific

35

LifePin 5 Development

parameter is read from the request and again passed to the response, s.t. the
detail view can again read it and display the correct LifePin message:

@QOverride

protected void onSubmitAction(ActionRequest request ,
ActionResponse response,
Object command, BindException bindException)
throws Exception {

long pinboardEntryld =
PortletRequestUtils. getLongParameter (

request ,
ParameterNameConstants . PINBOARDENTRY 1D,
-1

);

The problem is that in case of a validation error, the onSubmitAction
doesn’t get called and so the parameter value is lost since it cannot be passed
any more to the response. The solution to this problem was to override the
processFormSubmission(. ..) of the AbstractFormController in the following
way:

@QOverride

protected void processFormSubmission (
ActionRequest request ,
ActionResponse response
Object command,
BindException errors)
throws Exception {

if (errors.hasErrors()) {
long pinboardEntryld =
PortletRequestUtils . getLongParameter (
request |,
ParameterNameConstants . PINBOARDENTRY 1D,
—1
)
response .setRenderParameter (
ParameterNameConstants . PINBOARDENTRY_ID,
String . valueOf(pinboardEntryld)

);

36

LifePin 5 Development

} else {
super . processFormSubmission (request ,
response , command, errors);

This allows to forward the request parameter to the response in case of an
error which can be retrieved from the BindingException object. If there are
no validation errors, the standard processFormSubmission(...) will be called
which in turn calls the onSubmitAction(...) of the AddComment controller
and the normal lifecycle continues.

5.2.2 Localization problems

The LifePin portlet has been fully localized into the English (default),
German and Italian language. This has been done by using the Spring Re-
sourceBundleMessageSource. Moreover in order to increase the efficiency,
the liferay-ui:icon tags have been used for adding command links on the user
interface. This has the advantage that images are rendered in an optimized
way and moreover the portlet uses standard icons as used on other parts of
the Liferay portal. In addition command texts are automatically localized
into the different languages. Here however a problem has been found with
the localization of the “add-article” liferay-ui:icon message. Although the
according localized message is present in the Liferay message bundles it isn’t
rendered correctly on the portlets Ul neither in the default English language
nor in others. It isn’t clear whether this is a bug in the liferay-ui:icon tag
since no according documentation has been found.

5.2.3 Hibernate “Set” vs. “List” mapping

A strange behavior that has been found during development is the dif-
ference in using the “List” or “Set” type in the Hibernate mapping files for
handling 1:n relations. By using the “List” element also its subelement “list-
index” has to be specified which must be mapped to a separate DB column.
When deleting elements however, one has to take care of updating the ac-
cording list indices manually, otherwise Hibernate will load “null” entries on
the missing positions of the list when reading it from the DB. This problem
doesn’t appear when using the List as annotation in Hibernate annotations
as well as when using the “Set” element.

37

	Introduction
	Use Case View
	Actors
	Use Case Diagram
	Use Case Descriptions

	Infrastructural View
	Development tools
	Application components
	Liferay Portal- / Application server
	Spring Web MVC framework
	Hibernate ORM framework
	PostgreSQL database

	Logical View
	Application layering components
	Packages and class diagrams
	Presentation Layer
	Package ``com.lifepin.controller''
	Package ``com.lifepin.validator''
	Package ``com.lifepin.utils''

	Service Layer
	Package ``com.lifepin.iservices''
	Package ``com.lifepin.services''

	Data Access Layer
	Package ``com.lifepin.idaos''
	Package ``com.lifepin.daos''

	Transversal layer
	Package ``com.lifepin.entities''

	Database schema
	Sequence diagrams / Scenarios
	Creating a new LifePin message

	Development
	Testing
	Technical problems
	Loosing parameter values on validation errors
	Localization problems
	Hibernate ``Set'' vs. ``List'' mapping

